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Note 

Evaluation of the Integral J’rt” exp (-P-x/t)& 

1. INTRODUCTION 

In many problems [l, 21 that involve the motion of particles having Maxwellian 
distribution there appears the function T,(X), defined by the integral 

T,(x) = jo= tn@-zlt dt, (1.1) 

where x is real and positive and the parameter n belongs to the set of natural numbers. 
The properties of T,(X) are well established [3, 41 and tabulated values are available 
[5] for the functions Tl , T, , T3 in the range 0 < x & 1 to 4 significant figures. 

More recently numerical values of T,(x) have been required with higher precision 
by Cole and Pack [6] and for relatively high values of the parameter IZ (up to 20) by 
Boffi, De Socio, Gaffuri and Pescatore [7]. In principle, with the use of high speed 
computers, the T, functions may be evaluated numerically for any x 3 0 and any 
value of II. However care must be taken to ensure that the required precision be 
maintained in the calculations. For example, there are some numerical differences 
between certain results in [7] and those of Loyalka [8], even though as pointed out by 
Cole [9], the relevant algebraic expressions in both papers are equivalent and ought to 
yield identical results. It is possible that these discrepancies are associated with the 
evaluation of the r, functions. The aim of the present note is to establish criteria for 
the accurate computation of T,(x) and to generalize the formulae to include negative 
values of n. 

2. PROPERTIES OF T,(x) 

Let x belong to the domain L, defined by 

L = IO9 03) 
I 

if n > -1, 
12 

a 00) if n < -1. 

The integral function (1 .I) exists in L, and satisfies the following properties; 

&c-4 YzZ -sk+l(-+ 

Xgn-lW + (n + 1) &a(x) - 2g?z+dx) = 0, 

2T,(x) = 5 (al, In x + bk) xk, 
k=O 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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where 

2ak-2 
ak = - k(k - l)(k - 2) ’ 

b = -2bk-, - (3k2 - 6k + 2) a, , 
Ic k(k - l)(k - 2) k 3 3, 

(2.5) 

with a, = a, = 0, b, = -a2 = 1, b, = - zJ12, b, = 3(1 - r)/2, y being the Euler 
constant. The asymptotic series [4, 51 are valid throughout L, subject to the condition 
E > 1, where E is defined by 

2x2 
E=-. 

i n I3 

Following [5] we write 

(2.7) 

where z = 3(x/2)“/” and 

c n,o = 1, GLl = (3n2 + 3n - 1)/12, 

I2QJ + 2) %9+2 = -(12p2 + 36~ - 3n2 - 3n + 25) c~,~+~ (2.8) 

+ &(n - 2p)(2p -F 3 - n)(2p + 3 - 2n) cn,B , p = 0, l,.... 

In the limit as x + 0 

T,(O) = ; r (qq, n > -1, 

Gn+dx) m-l 
Ln(x) --? m > 1. x (2.10) 

For small and moderate values of x a typical calculation proceeds as follows. 
First T,(x) is computed by means of the series (2.4). Next, by differentiation and 
integrating and using (2.2) and (2.9) corresponding series may be found for T,(x) and 
T,(x). Finally, these values may be inserted into the recurrence relation (2.3) to 
generate T,(x), n = 2, -1, &3, f4 ,..., fN say. Although the task of computing the 
various expressions is straightforward, numerical difficulties may arise. For a given 
target precision for T,(x) there will be a critical calue for x, xL , above which the series 
(2.4) fails, in practical terms, to converge fast enough. On switching to the asymptotic 
expression (2.7), valid for E > 1, a corresponding critical value of x, xU , exists, below 
which the representation cannot achieve the required accuracy. If xU > xL , a third 
method must be used to evaluate T,(x) to the required precision, for example, Padi: 
approximants or direct numerical integration. But even if To , Tl and T, can be found 
with the required precision, the use of the recurrence (2.3) may generate numerical 
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errors which grow and eventually swamp the function T,(x). It is well known [lo, 1 I] 
that stability in recurrence relations may depend on (a) the particular solution of the 
difference equation being computed; (b) the values of x or other parameters (in this 
case, n) in the difference equation, and (c) the direction in which the recursion is 
followed. 

3. CHOICE OF RECURSIVE DIRECTION 

We associate with recurrence relation (2.3) fundamental solutions yl,% , yz,n , JJ~,~ . 
Numerical errors introduced either initially or subsequently by rounding are propa- 
gated by all three solutions as the recursion proceeds. We wish to contain the relative 
error of T,(x) for fixed x and different n. The conclusion of Oliver [l l] is thus appro- 
priate, namely that recursion is effective in the direction for which the required 
solution dominates. It is necessary then to identify which solution corresponds to the 
required T,, function. The cases it positive and n negative are dealt with separately. 

Case (a) n positive 

Asymptotic forms, for fixed x and sufficiently large IZ, of the fundamental solutions 
yi,n of (2.3) may be obtained by making appropriate balances between the three terms. 
On neglecting the first member of (2.3), the resulting balance may be written 

&+2(X) n+l 
&l(x) 

--. 2 

Equation (3.1) yields two uncoupled solutions, which can be expressed 

Y1,RN - fl 112 

Y1.w1 0 2 ’ 

Y2.n n 112 

Y2,n-1 - - i-1 * 2 

(3.1) 

(3.2) 

(3.3) 

The term neglected in (2.3), namely xg,-, has order of magnitude &j2 relative to the 
retained terms. A third solution of (2.3) can be found by neglecting the third member, 
yielding 

Y3,n--X 
Y3.w1 n * 

Here the neglected term has order of magnitude O(E). It is useful to note also that 

I*/* 1 = O(El/2). (3.5) 
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Thus, when E Q 1, that is, when 2x2 Q n3, the three fundamental solutions are given 
by (3.2)-(3.4). We see from equation (3.5) that the solution pair yl,n , JJ~,~ dominates 
for forward recursion whilst y3,% dominates for backward recursion. 

A third balance is possible between the terms of (2.3) by neglecting the second 
member. We then obtain 

(3.6) 

All three solutions of type (3.6) have effectively uncoupled. The fundamental solutions 
satisfy 

I*1 -(g3y i = 1, 2, 3. (3.7) 

This time the neglected member has order of magnitude O(E-~/~), which means that 
solutions (3.6) are valid when 2x2 > n3. Thus forward recursion is stable for both 
E > 1 (z& and E < 1 (J+,,J. Backwards recursion is stable for E > 1 (zi,,) but 
unstable for E Q l(~~,,). For the purpose of identifying the T, functions the cases 
E < 1 and E > 1 are considered separately. 

we fiti E < 1. From (2.9) and the result r(z + a)/r(z + b) N z=-~ as z -+ 00 [5] 

(3.8) 

When x = 0 behaviour similar to (3.8) for T,(X) may be inferred from the inequality 

T,(x) 3 e-“(T,(O) - l/(n + 1)). (3.9) 

Since T,(x) is identified with (3.2), forward recursion is stable. However backward 
recursion is not, due to the dominance of solution (3.4) in ratio (3.5). 

(ii) E > 1. From (2.7) we have 

Td-4 x 113 

T,_loNT ’ ! 1 
(3.10) 

which corresponds to (3.7). Thus the recursion relation is stable forwards and back- 
wards. 

Case (b) n negative 

It proves convenient to re-express (2.3), setting n = -m, in the form 

--2g-b2)(x) - Cm - 11 g&4 + xg-(m+l)(x) = 0. (3.11) 
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Corresponding to the balances which lead to equations (3.2)-(3.5) we find solutions, 
for sufficiently large m, of type 

j Yi,-m j - (&,"', 

.Yi,-(m-1) 
i = 1, 2, E < 1, 

Y3,-m m - 1 N------ 
.h-h-.1) x ' 

c<< 1, 

(3.12) 

(3.13) 

with 

Yl.-??I 

l/l 

Y%-WI 
Yl*-(m-1) Y3.-bn-1) 

= 0(&q. (3.14) 

Equation (3.14) shows that for m increasing y3,+ dominates yl,- whereas for positive 
n, (3.5) shows the reverse. We therefore expect y,,-, to dominate for forward (m in- 
creasing) recursion and y,,-, to dominate for backwards recursion. 

The third possible balance, corresponding to (3.6) gives the three uncoupled 
solutions 

g-nl 2 
g-h-3) - T-L ’ 

(3.15) 

valid, and stable in both directions, for E> 1. The behaviour of yssdrn (3.13), corresponds 
to the T-,(X) behaviour in (2.10). Thus, the T-,(x) are stable forward and unstable 
backwards. For e > 1 however the T-,(X) are stable in both directions. 

To sum up; if the starting values T,, , T1 and T, are known for a given x = 0, then 
recursion may proceed safely for T, whether n is positive or negative. Recursion 
towards T,, is only stable within the regime E > 1. 

4. EVALUATION OF T,(x), T,(x), T,(x) 

For any x > 0, the T,(x) are stable when computed by forward recurrence because 
the relative error does not grow with increasing ( n /. The relative accuracy of T, 
therefore depends upon the relative accuracy of To, TI and T, . The coefficients of the 
series expansion (2.4) may be obtained recursively from (2.5) and (2.6) without fear 
of numerical instability. The number of terms required to achieve a given relative 
accuracy increases with x. For example, when x equals five, twentyfour terms in the 
series (2.4) are needed for nine significant figures (SF) using double precision arith- 
metic. Single precision calculations were found to lead to 9SF accuracy only for 
x < 3. For higher values of x the situation is worse. 

The asymptotic series (2.7) on the other hand is available for high enough x. For 
x = 20 ten terms in the asymptotic series for Ti , i = O,..., 20, sufficed for 9SF 
accuracy. For larger values of x fewer terms were needed. In the interval 7 < x < 10 
numerical integration was necessary to calculate the integral (1.1). The substitution 
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t = (1 - u)-’ - 4 transforms the range of integration from [0, co) into [-1, 11; the 
numerical procedure employed was based on the optimum addition of points to the 
Gauss quadrature formula [12, 131. This procedure was used also to verify the results 
from the convergent and asymptotic series. 

NUMERICAL RESULTS 

In Table I we illustrate the stability of forward of forward recursion. In column 1 
the starting value To is given (for x = 30) with precision ranging from 9 to 1 SF. 
Starting values for Tl and T, are similarly supplied. Recurrence relation (2.3) is used 
to generate T,, , whose value is shown in the second column, and T-,, , shown in 
column three. It is clear that the accuracy of Th5,, is maintained relative to the accuracy 
of To. This behaviour was repeated in test runs where x ranged from 0.001 to 100. 

TABLE I 

Stability of Forward Recursion, x = 30 

To x lOa Tso x lo= Teso x lOI* 

1.212 640 12 4.397 683 68 3.504 994 33 
1.212 640 4.397 683 56 3.504 994 2 
1.212 6 4.397 62 3.504 95 
1.21 4.394 3.502 
1 4.1 3.3 

In Table 11 we illustrate some stable and unstable features of backward recursion. 
It proves instructive to consider a relatively high value, x = 30, for which there exist 
regions E < 1 and E > 1 depending upon n. As 1 n I ranges from 1 to 10 E ranges from 
approximately two thousand to two, so we expect the backwards recursion to be 
essentially stable. This is seen in column two of the Table where the bold face figure 
represents the machine accuracy (16 for calculations in which n > 0 and 14 for it < 0, 
using two different machines). For / n 1 = 20, E B $ and we expect mild backwards 
instability between 1 n I = 20 and 10, shown in column three. For higher starting 
values of j n / the instability sharpens until at / n / = 50 the instability devastates 
T,, (column 6). An interesting feature to note is that, as predicted, the relative accuracy 
is essentially held between I n / = 10 and n = 0. 

In Table III we present values of T,, , Tl and T, for x in the range 1O-3 to lo2 to 
9SF. Entries for x < 5 were computed from the convergent series expression (2.4), the 
number of terms in the series for T,(x) being shown in column 5. Entries for x > 20 
were computed from the asymptotic expansion (2.7) and for the remaining interval 
7 < x < 10 numerical quadrature was employed. All entries agree to 9SF with 
quadrature calculations of Siewert and Grandjean [14]. Comparison was also made 
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TABLE II 

Stability of Backward Recursion, x = 30 

I T,“, - T$ liTfIr = 000’) 

n 

-50 
-40 
-30 
-20 
-10 

0 
0 

10 
20 
30 
40 
50 

I” 

-14 
-14 
-16 
-16 

Y Y r r 
--___- - 

-14 
-14 -7 

-- 14 -8 0 
-14 -11 -3 +5 
-12 -8 0 +8 
-11 -7 +1 +8 
-14 -11 -4 +4 
-14 -11 -4 $4 
-16 -13 -5 +2 

-16 -10 -3 
-16 -10 

-16 

LI Tsa computed by backwards recurrence from bold face figure. 
1, Tnt computed by forwards recurrence from T2 onwards. 

TABLE III 
Values of T,,(x), T,(x) and Tz(x) to 9SF 

X 

0.001 

0.01 
0.10 
0.50 
1.00 
1.25 
1.50 
1.75 
2.00 
2.50 
3.00 
4.00 
5.00 
7.00 
8.00 
9.00 

10.00 
20.00 
30.00 
40.00 
50.00 

100.00 

T&4 

8.791 841 09(-01) 
8.387 458 48(-01) 
6.343 215 82(-01) 
2.987 173 53(-01) 
1.500 459 65(-01) 
1.111 466 24(-01) 
8.390 956 72(-20) 
6.429 963 93(-02) 
4.987 649 66(-02) 
3.089 888 50(-02) 
1.973 853 52(-02) 
8.619 308 83(-03) 
4.022 478 82(-03) 
1.004 586 83(-03) 
5.280 881 90(-04) 
2.849 775 27( -04) 
1.572 691 73(-04) 
9.122 975 92(-07) 
1.212 640 12(-08) 
2.562 828 77( - IO) 
7.398 758 77(-12) 
2.119 813 72(-18) 

T,(x) T,(x) abc 

4.991 175 44(-01) 4.426 139 05(-01) 4” 
4.913 999 91(-01) 4.381 568 45(-01) 6” 
4.263 396 79( -01) 3.969 925 50(-01) s” 
2.531 761 74(-01) 2.653 830 44(-01) IO” 
1.465 633 81(-01) 1.684 873 48( -01) 14” 
1.142 154 71(-01) 1.360 920 00-01) 14” 
9.002 630 74(-02) 1.107 033 00-01) 14” 
7.162 928 43(-02) 9.059 828 06( -02) 16” 
5.744 661 43(-02) 7.453 878 20-02) 16” 
3.768 758 33(-02) 5.114 826 80(-02) 18” 
2.526 371 96(-02) 3.564 180 87(-02) 18” 
1.193 080 33(-02) 1.795 659 00-02) 20” 
5.927 054 23(-03) 9.405 873 71(-03) 24” 
1.630 738 21(-03) 2.814 956 54(-03) 127b 
8.915 091 47(-04) 1.593 208 90(-03) 1 27b 
4.981 821 05(-04) 9.184 689 10(-04) 127” 
2.837 185 19(-04) 5.380 869 64-04) 127” 
2.034 457 89(-06) 4.689 067 84(-06) 10” 
3.071 140 15(-08) 7.980 178 53(-08) 7c 
7.111 651 72(-10) 2.016 154 49(-09) 7” 
2.205 050 08( - 11) 6.695 044 40( - 11) 6” 
7.904 590 64( - 18) 2.982 882 70(-17) 5’ 

a No. of terms used in convergent series. 
b No. of function evaluations in quadrature formula. 
c No. of terms used in asymptotic series. 
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between values of T,(X) for 1 n i 2 2 by the asymptotic formula and by the recurrence 
formula. For fixed x, as / M 1 increased, so decreasing E, more terms in the asymptotic 
series were needed for satisfactory agreement, which suggests that the recurrence 
relation ought to be used to generate T,(x), 1 IZ 1 > 2, whatever the method used to 
generate the starting values TO , TI and T, . 
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